Calculate MCMC diagnostics for individual parameters.
diagnostics(x)
A tibble listing the Gelman point estimates and upper bounds (obtained from coda::gelman.diag) and effective sample size (obtained from coda::effectiveSize) for each parameter within each model.
set.seed(888)
data <- dreamer_data_linear(
n_cohorts = c(20, 20, 20),
dose = c(0, 3, 10),
b1 = 1,
b2 = 3,
sigma = 5
)
# Bayesian model averaging
output <- dreamer_mcmc(
data = data,
n_adapt = 1e3,
n_burn = 1e3,
n_iter = 1e4,
n_chains = 2,
silent = FALSE,
mod_linear = model_linear(
mu_b1 = 0,
sigma_b1 = 1,
mu_b2 = 0,
sigma_b2 = 1,
shape = 1,
rate = .001,
w_prior = 1 / 2
),
mod_quad = model_quad(
mu_b1 = 0,
sigma_b1 = 1,
mu_b2 = 0,
sigma_b2 = 1,
mu_b3 = 0,
sigma_b3 = 1,
shape = 1,
rate = .001,
w_prior = 1 / 2
)
)
#> mod_linear
#> start : 2024-12-19 14:43:20.831
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 6
#> Unobserved stochastic nodes: 3
#> Total graph size: 50
#>
#> Initializing model
#>
#> finish: 2024-12-19 14:43:20.903
#> total : 0.07 secs
#> mod_quad
#> start : 2024-12-19 14:43:20.904
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 6
#> Unobserved stochastic nodes: 4
#> Total graph size: 59
#>
#> Initializing model
#>
#> finish: 2024-12-19 14:43:20.979
#> total : 0.07 secs
# for all models
diagnostics(output)
#> # A tibble: 7 × 5
#> model param gelman_point gelman_upper effective_size
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 mod_linear b1 1.00 1.00 20695.
#> 2 mod_linear b2 1.00 1.00 20000.
#> 3 mod_linear sigma 1.00 1.00 19553.
#> 4 mod_quad b1 1.00 1.00 20211.
#> 5 mod_quad b2 1.00 1.00 17217.
#> 6 mod_quad b3 1.00 1.00 17119.
#> 7 mod_quad sigma 1.00 1.00 16379.
# for a single model
diagnostics(output$mod_quad)
#> # A tibble: 4 × 4
#> param gelman_point gelman_upper effective_size
#> <chr> <dbl> <dbl> <dbl>
#> 1 b1 1.00 1.00 20211.
#> 2 b2 1.00 1.00 17217.
#> 3 b3 1.00 1.00 17119.
#> 4 sigma 1.00 1.00 16379.